Circles and Lines

KEVIN ZHANG AND MAHITH GOTTIPATI

March 2023

Power of Points

(1.1)

(1.2)

Two Intersecting Secants Theorem

2.1 Problem 1

A circle of radius 3 units is drawn. Lines *BC* and *DC* are tangent to the circle. $\angle BCD$ is 60 degrees. Find the area of the shaded area.

Q2.2 Problem 2 (Brilliant)

In the figure below, the small circle with center *P* has a radius 3 and the large circle with center *C* has radius 4. *PC* has length 6 units. What is the length of *AB*?

Q2.3 Problem 3 (AIME)

Circles ω_1 and ω_2 intersect at two points *P* and *Q*, and their common tangent line closer to *P* intersects ω_1 and ω_2 at points *A* and *B*, respectively. The line parallel to *AB* that passes through *P* intersects ω_1 and ω_2 for the second time at points *X* and *Y*, respectively. Suppose *PX* = 10, *PY* = 14, and *PQ* = 5. Then the area of trapezoid *XABY* is $m\sqrt{n}$, where *m* and *n* are positive integers and *n* is not divisible by the square of any prime. 4

Find m + n.

(2.3)

Q2.4 Problem 4 (AHSME)

Two tangents are drawn to a circle from an exterior point *A*; they touch the circle at points *B* and *C* respectively. A third tangent intersects segment *AB* in *P* and *AC* in *R*, and touches the circle at *Q*. If AB = 20, what is the perimeter of $\triangle APR$?

Q3.1 Solution 1

 $\triangle ABC$ is a 30 – 60 – 90 triangle, with *AB* being 3 units and *BC* being $3\sqrt{3}$. The area of $\triangle ABC$ is $\frac{9\sqrt{3}}{2}$, meaning quadrilateral *ABCD* has area $9\sqrt{3}$. Sector *BAD* has an angle of 120 degrees, a third of the circle. The area of the sector is $\frac{1}{3} \cdot 3^2 \cdot \pi = 3\pi$. Therefore the shaded area is $9\sqrt{3} - 3\pi$.

3.2 Solution 2

Denote the intersection of the large circle and *PC* as *X* From power of points, we know:

$$PA \cdot PB = PX \cdot PC$$

The length of *PX* is simply PC - XC = 6 - 4 = 2. So we have:

$$3 \cdot (3 + AB) = 2 \cdot 6 = 12$$
$$3 + AB = 4$$
$$AB = 1$$

3.3 Solution 3

Let the intersection between AW_1 and XP be O_1 , and BW_2 and PY be O_2 . Note the lines connecting A and W_1 are perpendicular to AB, as is BW_2 . Because AB and XY are parallel, XP is perpendicular AW_1 , meaning $AO_1 = O_1P$, and the same applies to PO_2 and O_2Y . That means $12 = O_1O_2 = AB = 7 + 5 = 12$. Power of points states that $AD^2 = DB^2 = DP \cdot (DP + PQ)$, meaning AD = DB = 6. We have

$$36 = DP \cdot (DP + 5)$$

, and solving we get DP = 4. To find the height of the quadrilateral, we use the Pythagorean theorem. One leg would be the height, the other would have length $DA - 0_1P = 1$ with a hypotenuse DP = 4. Solving for the height $\sqrt{4^2 - 1} = \sqrt{15}$. Using the formula for area of a quadrilateral, the area of *XYAB* is $18\sqrt{15}$, so the answer is 33.

3.4 Solution 4

(3.1)

Image Credit: AOPS We are trying to find AP + PR + AR. PR = PQ + QR = PB + RC, which means AP + PR + AR = AB + AC, so the perimeter of the triangle is 40 units.