Circles and Lines

Kevin Zhang and Mahith Gottipati

March 2023

Concepts

Power of Points

Two Intersecting Secants Theorem

Practice Problems

Q2.1 Problem 1

A circle of radius 3 units is drawn. Lines $B C$ and $D C$ are tangent to the circle. $\angle B C D$ is 60 degrees. Find the area of the shaded area.

Q2.2 Problem 2 (Brilliant)

In the figure below, the small circle with center P has a radius 3 and the large circle with center C has radius 4. PC has length 6 units. What is the length of $A B$?

Q 2.3 Problem 3 (AIME)

Circles ω_{1} and ω_{2} intersect at two points P and Q, and their common tangent line closer to P intersects ω_{1} and ω_{2} at points A and B, respectively. The line parallel to $A B$ that passes through P intersects ω_{1} and ω_{2} for the second time at points X and Y, respectively. Suppose $P X=10, P Y=14$, and $P Q=5$. Then the area of trapezoid $X A B Y$ is $m \sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime.

Find $m+n$.

Q2.4 Problem 4 (AHSME)

Two tangents are drawn to a circle from an exterior point A; they touch the circle at points B and C respectively. A third tangent intersects segment $A B$ in P and $A C$ in R, and touches the circle at Q. If $A B=20$, what is the perimeter of $\triangle A P R$?

3 solutions

Q3.1 Solution 1

$\triangle A B C$ is a $30-60-90$ triangle, with $A B$ being 3 units and $B C$ being $3 \sqrt{3}$. The area of $\triangle A B C$ is $\frac{9 \sqrt{3}}{2}$, meaning quadrilateral $A B C D$ has area $9 \sqrt{3}$.Sector $B A D$ has an angle of 120 degrees, a third of the circle. The area of the sector is $\frac{1}{3} \cdot 3^{2} \cdot \pi=3 \pi$. Therefore the shaded area is $9 \sqrt{3}-3 \pi$.

Q3.2 Solution 2

Denote the intersection of the large circle and $P C$ as X From power of points, we know:

$$
P A \cdot P B=P X \cdot P C
$$

The length of $P X$ is simply $P C-X C=6-4=2$. So we have:

$$
\begin{gathered}
3 \cdot(3+A B)=2 \cdot 6=12 \\
3+A B=4 \\
A B=1
\end{gathered}
$$

Q3.3 Solution 3

Let the intersection between $A W_{1}$ and $X P$ be O_{1}, and $B W_{2}$ and $P Y$ be 0_{2}. Note the lines connecting A and W_{1} are perpendicular to $A B$, as is $B W_{2}$. Because $A B$ and $X Y$ are parallel, $X P$ is perpendicular $A W_{1}$, meaning $A 0_{1}=0_{1} P$, and the same applies to PO_{2} and $\mathrm{O}_{2} Y$. That means $12=0_{1} \mathrm{O}_{2}=A B=7+5=12$. Power of points states that $A D^{2}=D B^{2}=D P \cdot(D P+P Q)$, meaning $A D=D B=6$. We have

$$
36=D P \cdot(D P+5)
$$

, and solving we get $D P=4$. To find the height of the quadrilateral, we use the Pythagorean theorem. One leg would be the height, the other would have length $D A-$ $0_{1} P=1$ with a hypotenuse $D P=4$. Solving for the height $\sqrt{4^{2}-1}=\sqrt{15}$. Using the formula for area of a quadrilateral, the area of $X Y A B$ is $18 \sqrt{15}$, so the answer is 33 .

Q3.4 Solution 4

Image Credit: AOPS We are trying to find $A P+P R+A R . P R=P Q+Q R=P B+R C$, which means $A P+P R+A R=A B+A C$, so the perimeter of the triangle is 40 units.

