Team: Ans:

Team:

 Ans:Team: Ans:

Team:
Ans:

Team: Ans:

Team:

Team:

Team:

Problem 1. Compute

$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}
$$

1 point
 point

Problem 2. Rushil places two non-intersecting ellipses on a plane. Tony then puts 5 points on each of these ellipses. Compute the maximum number of these points that can all lie on the same circle.

Problem 3. Michelle is learning her 123 's. She writes out all the integers from 1 to 1000 . What digit appears the most in her list?

Problem 4. In $\triangle A B C$, let $A B=A C$, and let D and E be on $A B$ and $A C$, respectively, such that $B D=D E$ and $D E \perp A C$. Compute $\angle E B C$.

Problem 5. Points A, B, C, \ldots, Z lie on a line in that order such that $A B=1, B C=2, \ldots, Y Z=25$. Compute

$$
F A \cdot F B \cdots F Z
$$

Problem 6. Say a group of people is fake if no three people in the group are all friends. Across all possible fake groups of 2022 people, we can choose n of the people - call them influencers - such that every person in the group is friends with at most two of these influencers. Find the maximum possible value of n. Note that friendship is mutual (i.e. if A is friends with B then B is friends with A).

Problem 7. Compute $a+b+c$ given that a, b, c are real numbers such that

$$
\begin{gathered}
a^{2}+b^{2}+c^{2}=14 \\
a^{3}+b^{3}+c^{3}=36 \\
a^{4}+b^{4}+c^{4}=100
\end{gathered}
$$

Problem 8. A permutation $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ of $\{1,2, \ldots, 8\}$ is called sus if $x_{i}<x_{9-i}$ for $i=1,2,3,4$. Compute the number of sus permutations.

Problem 9. Deepu is learning his ABC's. Sreeja gives him a string of letters, and his job is to find the number of subsequences of the form $A B C$. For example, the sequence $A B B C C$ has 4 such subsequences:

$$
\text { ABBCC, } \mathrm{ABBCC}, \mathrm{ABBCC} \text {, and } \mathrm{ABBCC} .
$$

Over all possible strings of 2022 letters, let the maximum number of subsequences ABC that Deepu can form be a^{b}, where a, b are positive integers such that $b>1$. Compute $a+b$.

Problem 10. A triple of distinct integers x, y, z taken from the set $\{-3,-2, \ldots, 2,3\}$ is called pog if

$$
(x-y)\left(x^{2}-y^{2}\right)\left(x^{3}-y^{3}\right)=3 z^{3}
$$

Compute the number of pog triples.

