Team Contest 4

Team: Ans:	Problem 1. Compute $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72}.$	1 point
Team: Ans:	Problem 2. Rushil places two non-intersecting ellipses on a plane. Tony then puts 5 points on each of these ellipses. Compute the maximum number of these points that can all lie on the same circle.	1 point
Team: Ans:	Problem 3. Michelle is learning her 123's. She writes out all the integers from 1 to 1000. What digit appears the most in her list?	2 point
Team: Ans:	Problem 4. In $\triangle ABC$, let $AB = AC$, and let D and E be on AB and AC , respectively, such that $BD = DE$ and $DE \perp AC$. Compute $\angle EBC$.	2 point
Team: Ans:	Problem 5. Points <i>A</i> , <i>B</i> , <i>C</i> ,, <i>Z</i> lie on a line in that order such that $AB = 1, BC = 2,, YZ = 25$. Compute $FA \cdot FB \cdot \cdots FZ$.	2 point
Team: Ans:	Problem 6. Say a group of people is <i>fake</i> if no three people in the group are all friends. Across all possible fake groups of 2022 people, we can choose n of the people – call them <i>influencers</i> – such that every person in the group is friends with at most two of these influencers. Find the maximum possible value of n . Note that friendship is mutual (i.e. if A is friends with B then B is friends with A).	3 point
Team: Ans:	Problem 7. Compute $a + b + c$ given that a, b, c are real numbers such that	3 point
	$a^2 + b^2 + c^2 = 14,$	
	$a^3 + b^3 + c^3 = 36,$ $a^4 + b^4 + c^4 = 100.$	
Team: Ans:	Problem 8. A permutation $\{x_1, x_2,, x_8\}$ of $\{1, 2,, 8\}$ is called <i>sus</i> if $x_i < x_{9-i}$ for $i = 1, 2, 3, 4$. Compute the number of sus permutations.	3 point
Team: Ans:	Problem 9. Deepu is learning his ABC's. Sreeja gives him a string of letters, and his job is to find the number of subsequences of the form ABC. For example, the sequence ABBCC has 4 such subsequences:	2 point
	Over all possible strings of 2022 letters, let the maximum number of subsequences ABC that Deepu can form be a^b , where a, b are positive integers such that $b > 1$. Compute $a + b$.	
Team: Ans:	Problem 10. A triple of distinct integers x, y, z taken from the set $\{-3, -2,, 2, 3\}$ is called <i>pog</i> if $(x - y)(x^2 - y^2)(x^3 - y^3) = 3z^3$.	1 point
	Compute the number of pog triples.	